Pure Exploration for Multi-Armed Bandit Problems

نویسندگان

  • Sébastien Bubeck
  • Rémi Munos
  • Gilles Stoltz
چکیده

We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can Corresponding author. Email addresses: [email protected] (Sébastien Bubeck), [email protected] (Rémi Munos), [email protected] (Gilles Stoltz) Preprint submitted to Elsevier June 10, 2010 be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pure Exploration in Episodic Fixed-Horizon Markov Decision Processes

Multi-Armed Bandit (MAB) problems can be naturally extended to Markov Decision Processes (MDP). We extend the Best Arm Identification problem to episodic fixed-horizon MDPs. Here, the goal of an agent interacting with the MDP is to reach a high confidence on the optimal policy in as few episodes as possible. We propose Posterior Sampling for Pure Exploration (PSPE), a Bayesian algorithm for pur...

متن کامل

On Interruptible Pure Exploration in Multi-Armed Bandits

Interruptible pure exploration in multi-armed bandits (MABs) is a key component of Monte-Carlo tree search algorithms for sequential decision problems. We introduce Discriminative Bucketing (DB), a novel family of strategies for pure exploration in MABs, which allows for adapting recent advances in non-interruptible strategies to the interruptible setting, while guaranteeing exponential-rate pe...

متن کامل

The Budgeted Multi-armed Bandit Problem

The following coins problem is a version of a multi-armed bandit problem where one has to select from among a set of objects, say classifiers, after an experimentation phase that is constrained by a time or cost budget. The question is how to spend the budget. The problem involves pure exploration only, differentiating it from typical multi-armed bandit problems involving an exploration/exploit...

متن کامل

Pure Exploration of Multi-armed Bandit Under Matroid Constraints

We study the pure exploration problem subject to a matroid constraint (Best-Basis) in a stochastic multi-armed bandit game. In a Best-Basis instance, we are given n stochastic arms with unknown reward distributions, as well as a matroid M over the arms. Let the weight of an arm be the mean of its reward distribution. Our goal is to identify a basis of M with the maximum total weight, using as f...

متن کامل

Cognitive Capacity and Choice under Uncertainty: Human Experiments of Two-armed Bandit Problems

The two-armed bandit problem, or more generally, the multi-armed bandit problem, has been identified as the underlying problem of many practical circumstances which involves making a series of choices among uncertain alternatives. Problems like job searching, customer switching, and even the adoption of fundamental or technical trading strategies of traders in financial markets can be formulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0802.2655  شماره 

صفحات  -

تاریخ انتشار 2008